If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2-2w-8=0
a = 4; b = -2; c = -8;
Δ = b2-4ac
Δ = -22-4·4·(-8)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{33}}{2*4}=\frac{2-2\sqrt{33}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{33}}{2*4}=\frac{2+2\sqrt{33}}{8} $
| (x-1)^=9 | | 3(x-4)/2=3(x+12)/10 | | 3x^2-10x+7=3x+2 | | 8k-8+k=-10 | | 3x^2+10x+7=3x+2 | | 66-4x=12-10 | | x+3-x2-6x-9=0 | | 3x+2(x-4)=5(x-6) | | 5x-(x=3)=1/3(9x+18)-5 | | 3x²+10x+7=3x+2 | | 4-1n=2 | | 7n=10n-0.5 | | -30-1.88x=-1.08x | | 5⋅(x+1)=15 | | 18=2-2d | | 4-3n=2-2n | | -2(x+3)=2x-14 | | 12w=42 | | 4n^2+3n= | | 9=11x=-51+x | | 6x-(2x+1)=7 | | 12-3y/2+y=3 | | 2(4b-2)=-2(2-8b) | | (x-3)^2-1=168 | | (x-3)^2+1=168 | | (x+8)/3=0 | | y=2(5.5)+3 | | x+3+2x=3(x+2)-3 | | 2x-5=½x+1 | | -4(x+4=2(x+10) | | X-1=3/x+1 | | 0,5*x+3=-x+9 |